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Abstract
It was shown by Gibbons and Tsarev (1996 Phys. Lett. A 211 19; 1999 Phys.
Lett. A 258 263) that n-parameter reductions of the Benney equations
correspond to n-parameter families of conformal maps. Here, we consider
a specific set of these, the hyperelliptic reductions. The mapping function for
this is calculated explicitly by inverting a second kind Abelian integral on the
stratum �1 of the Jacobi variety of a genus g (g � 3) hyperelliptic curve. This
is done using a method based on the result of Jorgenson (1992 Isr. J. Math.
77 273).

PACS numbers: 02.30.Ik, 02.30.Jr, 02.30.Zz

1. Introduction

1.1. Reductions of the Benney moment equations

The Benney equations [3] are an example of an infinite system of hydrodynamic type. These
can be written as a Vlasov equation [7, 15]

∂f

∂t2
+ p

∂f

∂x
− ∂A0

∂x

∂f

∂p
= 0.

Here f = f (x, p, t) is a distribution function and the moments are defined by

Am =
∫ ∞

−∞
pnf dp.

Benney showed that this system has infinitely many conserved densities, polynomial in the
moments Am.

Following [1, 14], we will now consider reductions of the moment equations; that is the
case where only a finite number, n, of the Am are independent. Here, the moment equations
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Figure 1. (The n-parameter reduction.) The p-plane with n branch cuts.
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Figure 2. The λ-plane associated with figure 1.

can be reduced to a diagonal system of hydrodynamic type with n Riemann invariants, λ̂i say,
dependent on n characteristic speeds, p̂i . We will assume that the characteristic speeds are
real and distinct.

It was shown by Tsarev and one of the authors that in such a case the reductions correspond
to n-parameter families of conformal mappings of slit domains. For details of the properties
of these maps and the general construction of such a domain see [8, 9]. We will now consider
a specific set of these reductions which we will call the hyperelliptic reductions.

1.2. Hyperelliptic reductions

For this set of reductions the conformal mapping λ(p) : �1 → �2 is defined as follows. Let
�1 be the upper half p-plane with 3n real points marked on it, pi (i = 1, . . . , 2n) and the set
of characteristic speeds p̂j (j = 1, . . . , n) as shown in figure 1. These satisfy

p1 < p̂2 < p3 < p4 < p̂3 < p5 < · · · < p2n−1 < p̂n < p2n.

The domain �2 is the upper half λ-plane with n vertical slits going from the fixed real points
λ0

i to the variable points λ̂i (i = 1, . . . , n) as in figure 2. Here, λ̂i is the Riemann invariant
associated with the characteristic speed p̂i and it satisfies the relation

Re(λ̂i) = λ0
i .

We now impose the conditions

λ(p) = p + O

(
1

p

)
as p → ∞ (1)

and

λ(p2i−1) = λ(p2i ) = λ0
i (i = 1, . . . , n). (2)

It follows that λ(p) is a function of n-independent parameters which may be taken to be
Im(λ̂i) (i = 1, . . . , n), the varying heights of the slits1 and that �2 is a polygonal domain. The
map p → λ(p) is thus of Schwarz–Christoffel type

λ(p) = p +
∫ p

∞
[ϕ(p′) − 1] dp′ (3)

1 Note that since Im(λ) � 0,∀p and the distribution function f = −π Im(λ), the distribution function is negative.
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Figure 3. A homology basis on the genus-g Riemann surface, Rg. The b-cycles are closed loops
on the first sheet and the a-cycles are completed on the second sheet (broken line). These have
intersection index given by ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = −aj ◦ bi = δij .

where ϕ(p) is given by

ϕ(p) =
∏n

i=1 (p − p̂i)√∏2n
i=1 (p − pi)

.

One of the conditions in (1) and (2) may be replaced by the constraint that the residue of
ϕ(p), as p → ∞ on either sheet is zero. This provides a relation between the set of points pi

and the set of characteristic speeds p̂j . Rewriting

ϕ(p) = pn − αn−1p
n−1 − αn−2p

n−2 − · · · − α1p − α0√∏2n
i=1 (p − pi)

we find that the expansion of ϕ(p) near infinity is

1 +

(
1
2

∑2n
i=1 pi − αn−1

)
p

+ O

(
1

p2

)
.

The condition on the residue is therefore satisfied when

αn−1 = 1

2

2n∑
i=1

pi

that is,
n∑

i=1

p̂i = 1

2

2n∑
i=1

pi. (4)

It follows that ϕ(p) dp is a second kind Abelian differential on the Riemann surface

Rg =
{

(p, v) : v2 =
2n∏
i=1

(p − pi)

}
where g = n − 1. That is, the differential 1-form ϕ(p) dp is meromorphic on Rg with zero
residue at each singular point.

This surface may be constructed from two copies of the complex p-plane joined along
the closed intervals

[p2i−1, p2i] (i = 1, 2, . . . , g + 1).

A homology basis (a1, a2, . . . , ag; b1, b2, . . . , bg) for Rg is given in figure 3.
The first three examples of these maps, g = 0, 1, 2, have been worked out in detail. For

g = 0 the mapping may be calculated directly. The case of the n = 2 elliptic reduction was
evaluated in [14] by Yu and Gibbons. The n = 3 genus 2 hyperelliptic reduction was studied
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in [1] by the authors. We now consider the case for g � 3. All such maps, once known
explicitly, correspond to reductions of Benney’s equations to systems of hydrodynamic type
with finitely many Riemann invariants. Tsarev’s generalized hodograph transformation [13]
leads to solutions of these, in terms of the solution of an over-determined system of linear
equations. The construction of n-parameter families of such maps is thus an important step
towards understanding the solutions of these equations.

2. Transformation of the integral

Following [1], the integral we need to evaluate is (3)

λ(p) = p +
∫ p

∞

 ∏g+1
i=1 (p′ − p̂i)√∏2g+2
i=1 (p′ − pi)

− 1

 dp′.

Setting p = p2g+2 − 1/t in the integrand (ϕ(p) − 1) dp, we find

(ϕ(p) − 1) dp =
Ag+1t

g+1 + Agt
g + · · · + A2t

2 + A1t + (−1)g+1√∏2g+2
i=1 [(p2g+2 − pi)t − 1]

− 1

 dt

t2
(5)

for some constants Ai (i = 1, 2, . . . , g + 1). We note here that

A1 = (−1)g
g+1∑
i=1

(p2g+2 − p̂i).

This may be expressed in terms of just the pi using identity (4)

A1 = (−1)g

2

2g+1∑
i=1

(p2g+2 − pi). (6)

If we now remove the constant imaginary factor

k =
(

−4∏2g+1
i=1 (p2g+2 − pi)

) 1
2

from (5), then we obtain a standardized form for the irrational denominator,

ϕ(p) dp = k

(
Ag+1t

g+1 + Agt
g + · · · + A2t

2 + A1t + (−1)g+1

s

)
dt

t2

= k

(
Ag+1t

g−1 + Agt
g−2 · · · + A2 +

A1

t
+

(−1)g+1

t2

)
dt

s
(7)

where

s2 = −k2 +

[
k2

2g+1∑
i=1

(p2g+2 − pi)

]
t + · · · + µ2gt

2g + 4t2g+1

= µ0 + µ1t + · · · + µ2gt
2g + 4t2g+1. (8)

The term

ϕ1(p) dp = k(Ag+1t
g−1 + Agt

g−2 + · · · + A2)
dt

s
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in (7) may be evaluated directly since the set

dui = t i−1 dt

s
(i = 1, 2, . . . , g)

forms a basis of holomorphic Abelian differentials. The last two terms in ϕ(p) dp can be
rewritten using (6) and the definitions of µ0 and µ1 in (8). We have

ϕ2(p) dp = k

[
(−1)g+1

t2
+

A1

t

]
dt

s

= (−1)g+1k

[
1

t2
− 1

2

(
2g+1∑
i=1

(p2g+2 − pi)

)
1

t

]
dt

s

= (−1)g+1k

[
1

t2
+

1

2

µ1

µ0

1

t

]
dt

s
. (9)

This is a second kind differential on Rg. As in the genus-2 case, we can evaluate ϕ2(p) dp

using a restriction of the Jacobi inversion theorem to a one complex-dimensional subspace of
the Jacobi variety, the one-dimensional stratum of the theta divisor, �1.

3. The Θ divisor

Following Enolski [4, 5], let Rg(s, t) be the hyperelliptic curve where s and t satisfy

s2 = 4
2g+1∏
i=1

(t − ti) =
2g∑
i=0

µit
i + 4t2g+1.

We define a set of holomorphic and their associated set of second kind differentials on Rg to
be, respectively,

dui = t i−1 dt

s
(i = 1, 2, . . . , g) (10)

and

dri =
2g+1−i∑

k=i

(1 + k − i)µ1+i+k

tkdt

4s
(i = 1, 2, . . . , g). (11)

From the period integrals of these differentials we form the matrices ω,ω′, η, η′:

2ω =
(∮

ai

duj

)
2ω′ =

(∮
bi

duj

)
2η =

(
−
∮

ai

drj

)
2η′ =

(
−
∮

bi

drj

)
(i, j = 1, 2, . . . , g).

These matrices satisfy the generalized Legendre relation(
ω ω′

η η′

)(
0 −Ig

Ig 0

)(
ω ω′

η η′

)T

= − iπ

2

(
0 −Ig

Ig 0

)
where Ig is the g × g identity matrix.

Letting � = 2ω ⊕ 2ω′ be the lattice generated by the periods of the holomorphic
differentials, the Jacobi variety, Jac(Rg), is the g-dimensional complex torus C

g

/�. The
Jacobi variety can be subdivided into k-dimensional strata, �k, defined by

�k =
{

u ∈ Jac(Rg) : u =
k∑

i=1

∫ (ti ,si )

(t0,s0)

du + 2ωK(t0,s0), (ti , si) ∈ Rg

}
(k = 1, . . . , g)
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where K(t0,s0) is the vector of Riemann constants with base point (t0, s0). These have the
structure Jac(Rg) = �g ⊃ �g−1 ⊃ · · · ⊃ �2 ⊃ �1. Such stratifications have been studied by
Ônishi [12] and others.

The Abel map, A : Rg → Jac(Rg), is given by u(z):

ui(z) =
∫ z

z0

dui (i = 1, 2, . . . , g)

where the ui(z) are taken modulo � and the base point z0 = (t0, s0) is any fixed point in Rg.

These create a one-dimensional image of the hyperelliptic curve in the Jacobi variety. For the
inversion theorem we require an extension of this map to a set of points.

From now on we shall take this to be (t0, s0) = (∞,∞),

Definition 3.1. A divisor D on the Riemann surface Rg is defined by the finite formal sum

D =
M∑
i=1

nizi

where ni ∈ Z and zi = (si, ti) ∈ Rg.

We define the Abel mapping of D onto Jac(Rg) by

A(D) =
M∑
i=1

ni

∫ zi

z0

du mod �.

The lower limit of integration, here the point z0, is called the base point of the Abel map.
From now on we shall set this to be (∞,∞).

3.1. Hyperelliptic function

Definition 3.2. The theta function is defined by the Fourier series

θ((2ω)−1u) =
∑

m∈Z
g

exp{iπ [mTτm + mT(ω−1)u]}

where τ = ω−1ω′ is a symmetric matrix with positive definite imaginary part.

One important property of this function is that it is zero when u = 2ωK, the vector of
Riemann constants associated with the point (∞,∞). For further properties see [4].

From the θ -function we define the Kleinian σ -function of the curve Rg to be

σ(u) = C exp(uTχu)θ((2ω)−1u − K)

where

C =
√

π3

det 2ω

(
1∏

1�i<j�2g+1 (ti − tj )

) 1
4

and χ = η(2ω)−1 is a symmetric matrix.
In analogy with the Weierstrass ℘-function, the Kleinian ℘-function is defined as [4]

℘ij = − ∂2

∂ui∂uj

ln[σ(u)] =
(

σiσj − σijσ

σ2

)
(u)

where

σi = ∂

∂ui

σ (u) σij = ∂2

∂uj∂ui

σ (u).
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Higher logarithmic derivatives of σ are expressed similarly. For example,

℘ijkl = − ∂4

∂ui∂uj∂uk∂ul

ln[σ(u)].

3.2. Jacobi inversion formula

Theorem 1 (Jacobi inversion theorem) [4]. The Abel preimage of the point u ∈ Jac(Rg) is
given by the set S = {(t1, s1), (t2, s2), . . . , (tg, sg)} ∈ (Rg)

g, where tk are the zeros of the
polynomial

P(t; u) = tg − tg−1℘g,g(u) − tg−2℘g,g−1(u) − · · · − ℘g,1(u)

and the sk are given by

sk = − ∂P(t; u)

∂ug

∣∣∣∣
t=tk

.

For the integral of the differential (9), we need the preimage of u when the points
ti → ∞ (i = 2, . . . , g). That is, for the case when S = {(t1, s1)} and so u ∈ �1:

A(S) =
∫ t1

∞
du.

This relation has been calculated from the results of Jorgenson [11] by Enolski (see
appendix A). We obtain

t1 = − σ1

σ2
(u)

∣∣∣∣
u∈�1

(12)

where the one-dimensional stratum �1 may be defined as

�1 = {u : σ(u) = 0, σk(u) = 0 (k = 3, . . . , g)}.
This useful result (12) was first given by Grant in [10].

4. Evaluation of the integral

We now further transform the integrand (ϕ1(p) + ϕ2(p)) dp using the substitution t =
(−σ1/σ2)(u) (12) and the definitions of the holomorphic differentials, dui (i = 1, 2, . . . , g)

(10).

Lemma 1. Let t = (−σ1/σ2)(u) where u ∈ �1 and define dui = t i−1 dt/s, a set of
holomorphic differentials on Rg. Then

ϕ(p) dp = k(AT · du) + (−1)g+1k

(
σ2

2

σ1
2
(u) − 1

2

µ1

µ0

σ2

σ1
(u)

)
dt

s

where AT = (A2, A3, . . . , Ag+1).

The term

ϕ2(u) du1 =
(

σ2
2

σ1
2
(u) − 1

2

µ1

µ0

σ2

σ1
(u)

)
du1

is a second kind differential with a pole of order 2 at u = ±u0 (see table 1). This can be
verified as follows.
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Table 1. A list of branch points (pi) and poles (∞±) of λ(p) with the corresponding points in the
t and u variables.

(p) p1 p2 · · · p2g+1 p2g+2 ∞±

(t) t1 t2 · · · t2g+1 ∞ 0±
(u) u1 u2 · · · u2g+1 0 ±u0

Since u0 is a regular point on the hyperelliptic curve Rg , we can evaluate the expansion
of ϕ2 near u0 in terms of the local parameter t. Setting vk = ek

T · (u−u0) where (ek)j = δkj ,

we have

vk =
∫ t

∞
duk −

∫ 0

∞
duk

=
∫ t

0

t k−1√
4t2g+1 + µ2gt2g + · · · + µ1t + µ0

dt .

This gives

vk =
(

1

k

1√
µ0

)
t k −

(
1

2(k + 1)

µ1

µ0
3
2

)
t k+1 + O(tk+2) (k = 1, 2, . . . , g)

and so for k > 1

vk =
(

1

k
µ0

(k−1)/2

)
v1

k + O
(
v1

k+1). (13)

The Taylor series of ϕ2 near u0 can thus be expressed in terms of the single parameter
v1 = e1

T · (u − u0). We have

σ2

σ1
(u0 − (u0 − u)) = (σ2) + (σ12)v1 + · · ·

(σ11)v1 + · · · =
(

σ2

σ11

)
v−1

1 + O(1)

and

σ2
2

σ1
2
(u0 − (u0 − u)) = σ2

2 + (2σ2σ12)v1 + · · ·
σ11

2v2
1 + (σ11σ111)v

3
1 + (2σ11σ12)v1v2 + · · ·

=
(

σ2
2

σ11
2

)
v−2

1 +

(
2
σ2σ12

σ11
2

− σ2
2σ111

σ11
3

− √
µ0

σ2
2σ12

σ11
3

)
v−1

1 + O(1)

(using (13)).

These expansions may be simplified by using the substitutions for σ11(u0) and σ111(u0)

calculated in appendix B. This gives(
σ2

2

σ1
2

− 1

2

µ1

µ0

σ2

σ1

)
(u0 − (u0 − u)) =

(
1

µ0

)
v−2

1 + O(1) (∀ g � 3). (14)

In analogy with the genus-2 case, we now consider the function

�(u) = − 1

µ0

σ11

σ1
(u)

for u ∈ �1. Since dui = (−σ1/σ2)
(i−1) du1, the derivative of � with respect to u1 along

�1 = {u : σ = 0, σk = 0 (k = 3, . . . , g)} is



Higher genus hyperelliptic reductions of the Benney equations 5349

ψ = d

du1

[
− 1

µ0

σ11

σ1

]
= − 1

µ0

[
g∑

i=1

(−1)i−1

(
σ1

σ2

)i−1 (
σ11i

σ1
− σ11σ1i

σ1
2

)]
. (15)

This function is only2 singular when σ1(u) = 0, that is when u = ±u0.

We calculate the Taylor series of ψ near the singular point u0 as follows. Since just the
first three terms in the sum contain negative powers of σ1 we will rewrite ψ(u) as

ψ = − 1

µ0

[(−σ11
2) 1

σ1
2

+

(
σ111 +

σ11σ12

σ2

)
1

σ1
+ O(1)

]
(∀ g � 3)

for u near u0. If we now take the limit u → u0 ⇔ p → ∞, we obtain

lim
u→u0

[
1

µ0

σ11
2

σ1
2

]
= lim

vi→0

[ (
σ11

2
)

+ (2σ11σ111)v1 + · · ·(
µ0σ11

2
)
v2

1 + (µ0σ11σ111)v
3
1 + (2µ0σ11σ12)v1v2 + · · ·

]

= lim
v1→0

[(
1

µ0

)
v−2

1 +

(
1

µ0

σ111

σ11
− 1√

µ0

σ12

σ11

)
v−1

1 + O(1)

]
and

lim
u→u0

[
− 1

µ0

(
σ111

σ1
+

σ11σ12

σ2σ1

)]
= lim

vi→0

[−(σ111σ2 + σ11σ12) + · · ·
(µ0σ2σ11)v1 + · · ·

]

= lim
v1→0

[(
− 1

µ0

σ111

σ11
− 1

µ0

σ12

σ2

)
v−1

1 + O(1)

]
.

Combining these gives

lim
u→u0

ψ(u) = lim
v1→0

[(
1

µ0

)
v−2

1 +

(
− 1√

µ0

σ12

σ11
(u0) − 1

µ0

σ12

σ2
(u0)

)
v−1

1 + O(1)

]
=
(

1

µ0

)
v−2

1 + O(1) (∀ g � 3) (16)

(using substitution (B.1)).
From the expansion of ϕ2 (14) and ψ (16) near their singular points, it follows that

(ϕ2(u) − ψ(u)) is a holomorphic function on Rg. We thus have that

(−1)g+1ϕ2(u) du1 + AT · du = (−1)g+1ψ(u) du1 + BT · du (17)

for some g-vector of constants B = (B2, B3, . . . , Bg+1)
T.

5. Evaluation of the vector B

Following [2], let f be a function on the Riemann surface Rg. The divisor of f, (f ), is defined
as

(f ) =
∑

niZi −
∑

miPi ni,mi ∈ Z
+

where Zi is a zero of f of degree ni and Pi is a pole of f of order mi. The degree of the divisor
of f is

deg(f ) =
∑

ni −
∑

mi.

2 The apparent singularity where σ2(u) = 0, that is when t = ∞, may be avoided by using ug , not u1, as a coordinate
in this region.
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For any function f and Abelian differential dv the following hold:

deg(f ) = 0 deg(dv) = 2g − 2. (18)

We will now consider the Abelian differential

(−1)g+1[ϕ2(u) − ψ(u)] du1.

By construction, du1 is a first kind Abelian differential. It therefore has no poles on Rg

and zeros of total degree (2g − 2). From section 4, we know that the hyperelliptic function
(ϕ2 − ψ) has no poles and so, by (18), it cannot have any zeros. Hence, for some constant
C0, we have

C0 du1 = (−1)g+1[ϕ2(u) − ψ(u)] du1.

Rewriting this using identity (17) gives

C0 du1 = (B − A)T · du

⇒ C0
dt

s
= [(B2 − A2) + (B3 − A3)t + · · · + (Bg+1 − Ag+1)t

g−1]
dt

s
.

Matching coefficients of t, we see

C0 = B2 − A2

and so

Bi = Ai (i = 3, . . . , g + 1).

The value of B2 may be found by evaluating (ϕ2(u) − ψ(u)) at a specific point. If,
for example, we take u = u0, then we obtain

C0 = lim
u→u0

[ϕ2(u) − ψ(u)] =
(

1√
µ0

σ22

σ2
(u0) +

2

µ0

σ112

σ2
(u0) − 2

µ0

σ12
2

σ2
2

(u0)

)
+ O(v1)

(using substitutions (B.1), (B.1) and (B.3) from appendix B). From this we have

B2 = A2 + (−1)g+1

(
1√
µ0

σ22

σ2
(u0) +

2

µ0

σ112

σ2
(u0) − 2

µ0

σ12
2

σ2
2

(u0)

)
.

It would be possible to rewrite σ112(u0) in terms of lower order σ -derivatives using the
following procedure. For each g � 1 there exists a set of PDE of the form

℘ijkl − f (µ0, . . . , µ2g+1;℘mn) = 0 (19)

where 1 � i � j � k � l � g and 1 � m � n � g (see [4]). If we expand (19) for u near
u0, then we get Taylor series equal to zero. The relations between the σ -derivatives at the
point u0 ∈ �1 are then found by setting σ(u0) = σ1(u0) = σk(u0) = 0 (k = 3, . . . , g) and
equating each coefficient with zero. This process, however, cannot easily be generalized for
all g � 3.

6. Result

Setting

k = ±√
µ0 = ±

(
−4∏2g+1

i=1 (p2g+2 − pi)

) 1
2

B̃2 = (−1)g+1

(
1√
µ0

σ22

σ2
(u0) +

2

µ0

σ112

σ2
(u0) − 2

µ0

σ12
2

σ2
2

(u0)

)
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and substituting

p = p2g+2 − 1

t
= p2g+2 +

σ2

σ1
(u)

into (3) we have

λ(p) = p +
∫ p

∞
[ϕ(p′) − 1] dp′ =

(
p2g+2 +

σ2

σ1
(u)

)

+
∫ 1

(p2g+2−p)

0

[
kAT · du + kB̃2 du1 + (−1)g+1k

(
d

du1
�(u)

)
du1 − dt

t2

]

=
(

p2g+2 +
σ2

σ1
(u)

)
+

[
k(A + B̃2e1)

T · u + (−1)g
k

µ0

σ11

σ1
− σ2

σ1
(u)

]
+ C̃.

The value of the constant C̃ can be found by considering the limit of (λ(p) − p) as
p → ∞+ ⇔ u → + u0. Since

lim
p→∞ [λ(p) − p] = 0

we have that

C̃ = −k(A + B̃2e1)
T · u0 + lim

u→u0

[
(−1)g+1 k

µ0

σ11

σ1
(u) +

σ2

σ1
(u)

]
.

Expanding the terms in this limit we obtain

lim
u→u0

[
(−1)g+1 k

µ0

σ11

σ1

]
= (−1)g+1

(
k

µ0

)
lim
vi→0

[
(σ11) + (σ111)v1 + · · ·

(σ11)v1 +
(

1
2σ111

)
v2

1 + (σ12)v2 + · · ·

]

= (−1)g+1

(
k

µ0

)
lim
v1→0

[
v−1

1 +

(
1

2

σ111

σ11
−

√
µ0

2

σ12

σ11

)
+ O(v1)

]

= (−1)g+1

(
k

µ0

)
lim
v1→0

[
v−1

1 +

(
2
σ12

σ2
+

1

4

µ1√
µ0

)
+ O(v1)

]
and

lim
u→u0

[
σ2

σ1

]
= lim

vi→0

[
(σ2) + (σ12)v1 + · · ·

(σ11)v1 +
(

1
2σ111

)
v2

1 + (σ12)v2 + · · ·

]

= lim
v1→0

[(
σ2

σ11

)
v−1

1 +

(
σ12

σ11
− 1

2

σ2σ111

σ11
2

−
√

µ0

2

σ2σ12

σ 2
11

)
+ O(v1)

]

= lim
v1→0

[(
− 1√

µ0

)
v−1

1 +

(
1

4

µ1

µ0

)
+ O(v1)

]
.

Since C̃ is constant we set k = (−1)g+1√µ0 and hence

C̃ = (−1)g
√

µ0(A + B̃2e1)
T · u0 +

2√
µ0

σ12

σ2
(u0) +

1

2

µ1

µ0
.

This gives the following result.
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Theorem 2. Let

λ(p) = p +
∫ p

∞

∏g+1
i=1 (p′ − p̂i)√∏2g+2
i=1 (p′ − pi)

dp′

k = (−1)g+1

(
−4∏2g+1

i=1 (p2g+2 − pi)

) 1
2

B̃2 = (−1)g+1

(
1√
µ0

σ22

σ2
(u0) +

2

µ0

σ112

σ2
(u0) − 2

µ0

σ12
2

σ 2
2

(u0)

)
and AT = (A2, A3, . . . , Ag+1) where the Ai are defined as

g+1∑
i=0

Ai t
i =

g+1∏
i=1

[(p2g+2 − p̂i)t − 1].

Then, if we set

p = p2g+2 +
σ2

σ1
(u)

with u, u0 ∈ �1 and σ1(u0) = 0, we have

λ(p) = (−1)g+1√µ0(A + B̃2e1)
T · (u − u0) − 1√

µ0

σ11

σ1
(u)

+ p2g+2 +
2√
µ0

σ12

σ2
(u0) +

1

2

µ1

µ0
(20)

on sheet R+
g of the Riemann surface

Rg =
{

(v, p) ∈ C
g : v2 =

2g+2∏
i=1

(p − pi)

}
associated with the relation p → ∞+ ⇔ u → + u0.

We note that in the g = 2 case the analogous solution to (20) could be rewritten using the
relation

σ11

σ1
(u) = σ1

σ
(u + u0) +

σ1

σ
(u − u0) = ζ1(u + u0) + ζ1(u − u0)

for u ∈ �1. In the case of higher genus reductions this is not possible since (u ± u0) ∈ �2

and ζ1 is singular everywhere on �2.

Formula (20) seems a little more complicated than the analogous results in genus 1 and
2; the reason for this is the difficulty of expanding the terms involving u0 in the general case.
However, we consider it remarkable that essentially the same formula is valid for any genus.
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Appendix A. Reduction of the inversion theorem to Θ1

Following Enolski and Previato [6], we begin by rewriting the main result of [11] in terms of
first derivatives of the σ -function.

Theorem 3. Let KP be the vector of Riemann constants associated with the point
P, {P1, P2, . . . , Pg−1} be a set of points on Rg and let a = (a1, a2, . . . , ag)

T, b =
(b1, b2, . . . , bg)

T ∈ C
g be any nonzero vectors. Then the following identity holds∑g

j=1 σj (u)aj∑g

j=1 σj (u)bj

= det[a| du(P1)| · · · | du(Pg−1)]

det[b| du(P1)| · · · | du(Pg−1)]

where the point u is given by

u =
g−1∑
k=1

∫ Pk

P

du + 2ωKP .

Here, we take the dui to be the holomorphic differentials defined above:

dui = t i−1

s
dt (i = 1, . . . , g).

Corollary 3.1. Let the points P1, P2, . . . , Pg−1 coalesce to a point P. Then we obtain by
L’Hôpital’s rule∑g

j=1 σj (2ωKP )aj∑g

j=1 σj (2ωKP )bj

= det[a| du(P )| du(P )(1)| · · · | du(P )(g−2)]

det[b| du(P )| du(P )(1)| · · · | du(P )(g−2)]
(A.1)

where du(P )(k) denotes the column of kth derivatives of the holomorphic differentials du(P ).

Expanding the RHS of (A.1) we find that the numerator is the determinant of the matrix

C



a1 1 0 0 · · · 0 0
a2 t 0 0 · · · 0 0
a3 t2 0 0 · · · 0 1
...

...
...

...
...

ag−1 tg−2 0 1 · · · 0 0
ag tg−1 1 0 · · · 0 0


for some constant C. The matrix in the denominator of the RHS is of the same form, but with
bi instead of ai (i = 1, . . . , g). It follows that (A.1) can be written as∑g

j=1 σj (2ωKP )aj∑g

j=1 σj (2ωKP )bj

= a1t − a2

b1t − b2
. (A.2)

To evaluate t in terms of the σj we can therefore set a = (1, 0, . . . , 0)T and b =
(0, 1, 0, . . . , 0)T. This gives

σ1

σ2
(u) = −t

for u ∈ �1. Further, since only a1, a2 and b1, b2 appear in the RHS of (A.2), we obtain the
following definition for �1:

�1 = {u : σ(u) = 0, σk(u) = 0 (k = 3, . . . , g)}.
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Appendix B. Differential relations holding at u = u0

For any u in �1 we have σ(u) = 0. Expanding this identity near u0 we obtain a Taylor series
in vk = ek

T · (u − u0) equal to zero:

0 = σ(u0 − (u0 − u))

= [
1
2σ11(u0)

]
v2

1 + [σ2(u0)]v2 + [σ12(u0)]v1v2 +
[

1
6σ111(u0)

]
v3

1 + · · ·
(since σ(u0) = σ1(u0) = σ3(u0) = 0). If we now substitute relations (13)

vk =
(

1

k
µ0

(k−1)/2

)
v1

k + O
(
v1

k+1
)

(k = 2, 3, . . . , g)

into this expansion, then for g � 3 we have

0 = [
1
2σ11(u0) + 1

2

√
µ0σ2(u0)

]
v2

1 +
[

1
6σ111(u0) + 1

12µ1σ2(u0) + 1
2

√
µ0σ12(u0)

]
v3

1 + O
(
v4

1

)
.

Setting each coefficient to zero, we find

σ11(u0) = −√
µ0σ2(u0) (B.1)

and

σ111(u0) = − 1
2µ1σ2(u0) − 3

√
µ0σ12(u0) (B.2)

for u0 ∈ �1 with σ1 (u0) = 0 and for ∀g � 3.

If we repeat the above procedure for the identity σ3(u) = 0 (∀u ∈ �1), then we obtain
the following expansion:

0 = σ3(u0 − (u0 − u))

= [σ13(u0)]v1 + [σ23(u0)]v2 +
[

1
2σ113(u0)

]
v1

2 + · · ·
= [σ13(u0)]v1 + O

(
v1

2).
This gives the identity

σ13(u0) = 0 for g � 3. (B.3)
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